## Change of Variables

Change of variables in multiple integrals is complicated, but it can be broken down into steps as follows. The starting point is a double integral in $x \& y$.

$$
\iint_{R} f(x, y) d A
$$

(1) If the transformation $T$ hasn't already been given, come up with the transformation to use.
(2) Figure out both directions of the transformation. ${ }^{1}$
(3) Fill in the following information in any order:


Note that depending on the problem you might use either order of integration, $d u d v$ or $d v d u$.

## Example 1

Use the transformation $x=\frac{1}{4}(u+v), y=\frac{1}{4}(v-3 u)$ to evaluate the integral $\iint_{R}(4 x+8 y) d A$, where $R$ is the parallelogram with vertices $(-1,3),(1,-3),(3,-1)$, and $(1,5)$.

1 I have already been given the transformation.
2 To get $u \& v$ in terms of $x \& y$, I solve for $u$ and $v$ in the system I was given (notice that I've distributed out the $\frac{1}{4}$ in each equation):

$$
\begin{align*}
& x=\frac{1}{4} u+\frac{1}{4} v  \tag{1}\\
& y=-\frac{3}{4} u+\frac{1}{4} v \tag{2}
\end{align*}
$$

Subtracting (2) from (1) gives me

$$
u=x-y
$$

and adding three times (1) to (2) gives me

$$
v=3 x+y
$$

3(a) This is nearly always the hardest step, and it can require a lot of work. In order to figure out $S$, I first need to understand what $R$ looks like. So I'm going to draw a picture. It isn't strictly necessary to draw a picture, but I find that if I have a picture to work with, the rest of the problem gets easier. The problem statement has told me that $R$ is a parallelogram with certain corners, so the first step to draw $R$ is to mark the corner points I was given. The result appears on the next page.

[^0]

Then I connect the dots to draw $R$ :


The point of drawing this picture of $R$ (the region of integration on the $x, y$ side of the transformation) was so that I could figure out $S$ (the region of integration over on the $u, v$ side of the transformation). To figure out $S$, all I have to do is figure out the boundary and then everything else will fill itself in.
In fact, all I have to is figure out either (i) what the transformation does to each of the 4 sides of $R$, or else (ii) what the transformation does to each of the 4 corners of $R$. Once I do either of those, the rest of $S$ will fill itself in. I know from step (2) that

$$
u=x-y, \quad v=3 x+y
$$

So plugging in the four corner points of $R$ gives me the corners of $S$ :

|  | $(x, y)$ | $(u, v)$ |
| :--- | ---: | ---: |
| Corner 1: | $(-1,3)$ | $(-4,0)$ |
| Corner 2: | $(1,-3)$ | $(4,0)$ |
| Corner 3: | $(3,-1)$ | $(4,8)$ |
| Corner 4: | $(1,5)$ | $(-4,8)$ |

Now I can mark the corners of $S$...

...and fill in the rest.


I've now got the hardest part out of the way, and I can fill in part of the integral:

(b) plug in $u \& v$ in place of $x \& y$

3(b) Since I already know what $x \& y$ are as functions of $u \& v$, I can just plug in that information:

$$
4 x+8 y=4[x(u, v)]+8[y(u, v)]=4\left[\frac{1}{4}(u+v)\right]+8\left[\frac{1}{4}(v-3 u)\right]=3 v-5 u .
$$

Now I can fill in another part of the integral:


3(c) The last ingredient I need for the change of variables is the Jacobian. Since I know what $x \& y$ are as functions of $u \& v$, I can take the derivatives and plug them in to get the Jacobian:

$$
\frac{\partial(x, y)}{\partial(u, v)}=\operatorname{det}\left[\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right]=\operatorname{det}\left[\begin{array}{rr}
1 / 4 & 1 / 4 \\
-3 / 4 & 1 / 4
\end{array}\right]=\frac{1}{16}-\frac{-3}{16}=\frac{1}{4}
$$

This is the last part of the integral that I need to fill in:

$$
\begin{aligned}
& \iint_{R}(4 x+8 y) d A=\int_{-4}^{4} \int_{0}^{8}(3 u-5 v)\left|\frac{1}{4}\right| d v d u \\
& \checkmark, \text { (a) change } R \text { to } S \\
& \checkmark, \text { (b) calculate the Jacobian } \\
&
\end{aligned}
$$

Now that I'm done with the change of variables, I can evaluate the integral in the usual way:

$$
\begin{array}{rlrl}
\iint_{R}(4 x+8 y) d A & =\int_{-4}^{4} \int_{0}^{8}(3 u-5 v)\left|\frac{1}{4}\right| d v d u & \\
& =\frac{1}{4} \int_{-4}^{4} \int_{0}^{8}(3 u-5 v) d v d u & & \\
& =\frac{1}{4} \int_{-4}^{4}\left[\frac{3}{2} v^{2}-5 u v\right]_{v=0}^{v=8} d u & & \\
& =\frac{1}{4} \int_{-4}^{4}(96-40 u) d u & & \\
& =\frac{1}{4}\left[96 u-20 u^{2}\right]_{-4}^{4} & \text { (pactor out the 1/4) } \\
& =192 & & \text { (now ins limite integral first) } u \text { integral) } \\
\text { (plug in limits) }
\end{array}
$$

## EXAMPLE 2

Make an appropriate change of variables to evaluate the integral $\iint_{R}(x+y) e^{x^{2}-y^{2}} d A$, where $R$ is the rectangle enclosed by the lines $x-y=0, x-y=2, x+y=0$, and $x+y=3$.

1 I need to come up with a change of variables that could make this integral easier. There are two ways I could approach this: I could try to make the integrand nicer or I could try to make the region of integration nicer. Alternatively, I could try to look at both the integrand and the region of integration while I try to come up with the transformation to use.

After staring at the problem for a while, I start to notice some patterns. $(x+y)$ shows up in a lot of places: it's mentioned twice in the description of $R$, it appears in the integrand, and in fact if I write

$$
(x+y) e^{x^{2}-y^{2}}=(x+y) e^{(x+y)(x-y)}
$$

then I notice that $(x+y)$ shows up twice in the integrand. So I could simplify a lot of pieces of the problem down to just $u$ if I set $u=x+y$. That leaves me with

$$
u e^{u(x-y)}
$$

in the integral, so the natural choice of $v$ is $v=x-y$, which turns the integrand into $u e^{u v}$.
2 I already know how to find $u \& v$ in terms of $x \& y$, so now I want to know how to find $x \& y$ in terms of $u \& v$. In other words, I need to solve this system for $x$ and $y$ :

$$
\begin{align*}
& u=x+y  \tag{1}\\
& v=x-y \tag{2}
\end{align*}
$$

Adding (1) $+(2)$ gives me $u+v=2 x$, so

$$
x=\frac{1}{2}(u+v),
$$

and subtracting (1)-(2) gives me $u-v=2 y$, so

$$
y=\frac{1}{2}(u-v) .
$$

3(a) In order to find $S$, I first need to understand $R$. Once again, I'll draw a picture since that's the easiest way for me to analyze the information that I have. The problem describes $R$ based on 4 lines, so the first thing I'm going to do to make a picture of $R$ is draw those lines:


The problem statement tells me that $R$ is the rectangle enclosed by those lines:


Since I know how to turn $x \& y$ into $u \& v$, I can now apply the transformation to each of the sides of $R$ in order to get the sides of $S$.

$$
\begin{array}{l|l}
x, y & u, v \\
\hline x-y=0 & v=0 \\
x-y=2 & v=2 \\
x+y=0 & u=0 \\
x+y=3 & u=3
\end{array}
$$

Now I can draw the sides of $S \ldots$

...and fill in the rest.


With the hardest part out of the way, and I can fill in part of the integral:

(b) plug in $u \& v$ in place of $x \& y$

3(b) I already saw how the integrand is transformed back when I was coming up with the transformation to use:

$$
(x+y) e^{x^{2}-y^{2}}=(x+y) e^{x^{2}-y^{2}}=(x+y) e^{(x+y)(x-y)}=u e^{u v}
$$

Thus

$$
\begin{array}{cc}
\iint_{R}(x+y) e^{x^{2}-y^{2}} d A=\int_{0}^{3} \int_{0}^{2} u e^{u v}\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d v d u \\
\checkmark \text { (a) change } R \text { to } S & \\
\checkmark \text { (c) calculate the Jacobian } \\
&
\end{array}
$$

3(c) I know what $x \& y$ are as functions of $u \& v$, so I can take the derivatives and plug them in to get the Jacobian:

$$
\frac{\partial(x, y)}{\partial(u, v)}=\operatorname{det}\left[\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right]=\operatorname{det}\left[\begin{array}{cc}
1 / 2 & 1 / 2 \\
1 / 2 & -1 / 2
\end{array}\right]=-\frac{1}{4}-\frac{1}{4}=-\frac{1}{2}
$$

This is the last part of the integral that I need to fill in:


Now that I'm done with the change of variables, I can evaluate the integral in the usual way:

$$
\begin{aligned}
\iint_{R}(x+y) e^{x^{2}-y^{2}} d A & =\int_{0}^{2} \int_{0}^{3} u e^{u v}\left|-\frac{1}{2}\right| d v d u \\
& =\frac{1}{2} \int_{0}^{3} \int_{0}^{2} u e^{u v} d v d u \\
& =\frac{1}{2} \int_{0}^{3}\left[e^{u v}\right]_{v=0}^{v=2} d u \\
& =\frac{1}{2} \int_{0}^{3}\left(e^{2 u}-1\right) d u \\
& =\frac{1}{2}\left[\frac{1}{2} e^{2 u}-u\right]_{0}^{3} \\
& =\frac{1}{2}\left(\frac{1}{2} e^{6}-3-\frac{1}{2}+0\right) \\
& =\frac{e^{6}-7}{4}
\end{aligned}
$$


[^0]:    ${ }^{1}$ We need to know how to get $(x, y)$ from $(u, v)$ to calculate the Jacobian, and we need to know how to get $(u, v)$ from $(x, y)$ to figure out the region of integration.

